Name:_____

	SE	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY EVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 20	19
		Course Code: EC461	
		Course Name: MICROWAVE DEVICES ANDCIRCUITS	
M	ax. I	Marks: 100 Duration: 3	Hours
		PART A	Marks
1		What are the limitations of conventional solid state devices at microwaves 2	(5)
1	a) b)	What does DADATT diada stands for and with next diagram avalain the	(3)
	D)	construction and working of it and derive power and efficiency of the same ?	(10)
2	a)	E valain GaAs MESEET with structure and principle of operation? Why GaAs	(10)
2	u)	MESFETs are preferred over Si MESFETs ?	(10)
	b)	Discuss different biasing techniques used for microwave bipolar transistor ?	(5)
3	a)	Explain one port negative resistance oscillator ?	(5)
	b)	A typical n-type GaAs GUNN diode has the following parameters	(10)
		Threshold field E_{th} = 2800 V/cm	
		Applied field E $= 3200 \text{ V/cm}$	
		Device length L $= 10 \mu m$	
		Doping concentration $n_o = 2*10^{14}/cm^3$	
		Operating frequency = 10 GHz	
		a) Compute the electron drift velocity	
		b) Current density	
		c) Negative electron mobility	
		PART B Answer any two full questions, each carries 15 marks.	
4	a)	Find the ABCD matrix coefficient computation of a transmission line section with	(7)
		characteristic impedance 'Z_o' propagation constant ' β ' and length 'l' ?	
	b)	Discuss the working of quarter wave transformer and halfwave	(8)
5	a)	Explain the working of single stub tuning ?	(6)
	b)	Discuss in detail about impedance and frequency scaling	(9)
6	a)	List the Kuroda's identity.	(5)

Reg No.:_____

G192117

b) Design a low pass filter for fabricat ion using microstrip line. The specifications (10)are cut-off frequency of 4 GHz, third order, impedance of 50 Ω and a 3 dB equiripple characteristics. The normalized low pass proto-type values are $g_1 = 3.3487$ $= L_1 g_{3,=} 3.3487 = L_3$, $g_2 = 0.7117 = C_2$, $g_4 = 1.000 = R_L$. PART C Answer any two full questions, each carries 20 marks. 7 a) Compare Monolithic MICs with hybrid MICs (7) b) Explain stripline in detail. (8) The stripline designed with a dielectric material with b = h = 3.1 mm, w = 2.5 mm(5) c) Find characteristic impedance Z_o ? $\sqrt{\mathcal{E}_r} = \sqrt{10.5}$. 8 a) Discuss different configurations of capacitors in MICs. (10)b) Compare short circuit and open circuit resonator. (5) c) Discuss discontinuities in MICs. (5) 9 a) Explain the classifications of switches. (7) b) Write notes on 1)Attenuators 2)Slotlines (7) c) Classify the losses in Microstrip lines (6)

F