Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: CS465

Course Name: BIOINFORMATICS

Ma	Max. Marks: 100 Duration: 3 Hou					
		PART A Answer all questions, each carries 4 marks.	Marks			
1		•				
1		Differentiate Bioinformatics and Computational biology.	4			
2		Differentiate nucleotides and nucleosides.	4			
3		Write a short note on Composite databases with suitable examples.	4			
4		How can we evaluate alignment of long multiple sequences?	4			
5		What is phylogenetic analysis? Explain distance matrix method for phylogenetic analysis.	4			
6		How Viterbi algorithm solve HMM problems?	4			
7		Explain how Microarrays can be used for gene analysis?	4			
8		Write down the functions of RNA polymerases in prokaryotes and eukaryotes?	4			
9		Define reverse protein folding.	4			
10		Write the features of the regular protein secondary structures of alpha helix and	4			
		beta pleated sheet.				
		PART B				
		Answer any two full questions, each carries 9 marks.				
11	a)	If a double stranded DNA has 40% of cytosine, calculate % of adenine in DNA.	2			
	b)	If the sequence of the coding strand in a transcription unit is written as follows: 5'GCATGCATGCATGCATGCATGCATGCATGCATGCATGCAT	1			
		mRNA.				
	c)	With the help of a diagram explain the concept of central dogma of molecular	6			
		biology				
12	a)	Describe a)OWL b)CATH	5			
	b)	What are biological databases? Why are they so important?	4			
13	a)	With a neat sketch describe DNA structure.	4			
	b)	Explain Entrez in detail	5			

PART C

Answer any two full questions, each carries 9 marks.

9

9

3

4

14 Using the Needleman and Wunsch dynamic programming method, construct the partial alignment score matrix and trace back matrix for the following two sequences, using the following scoring parameters match score=+1,mismatch score=0,gap penalty =-1.

ACAGTCGAACG

ACCGTCCG

What is the optimal global alignment and score between sequences?

15 Use UPGMA to reconstruct a phylogenetic tree using the following distance matrix:

Species	A	В	С	D
В	3	-	-	-
С	6	5	-	-
D	9	9	10	-
Е	12	11	13	9

a) Draw the phylogenetic tree that corresponds to standard Newick format as ((A,B)C)(D,E)).

- b) Draw all possible unrooted trees for the species having taxa A,B,C and D.
- c) What is the importance of BLOSUM matrix?

PART D Answer any two full questions, each carries 12 marks.

- a) What is GC content? How it differ in eukaryotic and prokaryotic genomes.
 b) How protein folding is done?
 a) Elaborate Chou-Fasman and GOR methods for predicting secondary structure.
 b) Explain the gene structure of eukaryotic and prokaryotic genome.
 6
- Explain Nussinov algorithm for RNA secondary structure prediction with an 12 example.
