Reg No.	.: Name:	
	APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION (R & S), MAY 2019	
	Course Code: MA102	
	Course Name: DIFFERENTIAL EQUATIONS	
Max. N	Iarks: 100Duration: 3 H	Hours
	PART A Answer all questions, each carries 3 marks	
1	Find the general solution of $\frac{d^3 y}{dx^3} + y = 0$	(3)
2	Find the Wronskian of $e^x \cos 2x$ and $e^x \sin 2x$	(3)
3	Find the Particular Integral of $y'' - 4y' - 5y = 4 \cos 2x$.	(3)
4	Find the particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = \sinh 2x$	(3)
5	Evaluate the coefficient a_n in the Fourier series expansion for $f(x) = \sin x $ in	(2)
	$-\pi < x < \pi$	(3)
6	Find the half range Fourier sine series representation of $f(x) = k$ in $(0,\pi)$	(3)
7	Find the partial differential equation of all spheres having their centre lies on z-	(2)
	axis.	(3)
8	Form the partial differential equation of $z = f(\frac{xy}{z})$ by eliminating the arbitrary	(3)
	function f.	
9	Solve $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$, $u(0,y) = 8e^{-3y}$, using the method of separation of variables.	(3)
10	A tightly stretched string of length l is fixed at both ends and pulled from its mid	
	point to a height h and realised from rest from this position. Write down the	(3)
	initial and boundary conditions.	
11	Find the steady state temperature distribution in a rod of length 30 cm, if the ends	(3)
	of the rod are kept at $20^{\circ}C$ and $80^{\circ}C$	(3)
12	Write down the three possible solutions of the one dimensional heat equation.	(3)

A1101

A

PART B

Answer six questions, one full question from each module Module 1

13 a) Solve the initial value problem
$$y'' + 4y' + 5y = 0, y(0) = 2, y'(0) = -5.$$
 (6)

b) Find the general solution of the differential equation
$$y''' - y'' + 4y' = 0$$
 (5)

OR

14 a) If $y_1(x) = x$ is a solution to the differential equation $(1 + x^2) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + 2y = 0$, find the general solution. (6)

b) Solve the ordinary differential equation y''' - 3y'' - 4y' + 6y = 0. (5)

Module 1I

15 a) Solve
$$2(3x+1)^2 \frac{d^2y}{dx^2} + 21(3x+1)\frac{dy}{dx} + 18y = 9x$$
 (6)

b) Solve
$$(D^4 + 2D^2 + 1)y = x^4$$
 (5)

OR

16 a) Use method variation of parameters to solve
$$\frac{d^2y}{dx^2} + 4y = \tan 2x$$
 (6)

b) Solve
$$(D^2 - 4D + 4)y = \sin^2 x$$
 (5)

Module 1II

17	a)	Obtain the half range Fourier cosine series expansion of $f(x) = x \sin x$ in $(0,\pi)$.	(6)

b) Find the Fourier series for f(x) = |x|, $-\pi < x < \pi$ (5)

OR

18 a) Find the Fourier series for
$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ \pi, 0 < x < \pi \end{cases}$$
 (6)

b) Find the Fourier series of the periodic function f(x) of period 4, where

$$f(x) = \begin{cases} 0, -2 < x \le -1 \\ k, -1 < x < 1 \\ 0, 1 \le x < 2 \end{cases}$$
(5)

Module 1V

19 a) Solve
$$\frac{y^2 z}{x} p + xzq = y^2$$
 (6)

b) Find the partial differential equation of all planes which are at a constant distance
(5) k from the origin.

OR

20 a) Solve
$$x^2(y-z)p + y^2(z-x)q = z^2(x-y)$$
 (6)

b) Solve
$$(D^2 + 3DD' + 2{D'}^2)z = x^2y^2$$
 (5)

Module V

21 A string is stretched between two fixed points at a distance of 60 cm and the points of the string are given initial velocities where

$$v = \begin{cases} \frac{\lambda x}{30}, \ 0 < x < 30\\ \frac{\lambda}{30}(60 - x), 30 < x < 60 \end{cases}$$
, x being the distance from an end, find the (10)

displacement at any time t.

OR

A uniform elastic string of length 60 cm is subjected to a constant tension of 2 Kg. If the ends are fixed, the initial displacement $u(x, 0) = 60x - x^2, 0 < x < 60$ and the initial velocity is zero, find the (10) displacement function u(x,t)

Module VI

23 Find the temperature distribution in a rod of length 2m whose end points are maintained at temperature $0^{\circ}C$ and the initial temperature is (10)

 $f(x) = 100(2x - x^2), 0 \le x \le 2$

OR

A bar 10 cm long with insulated sides has its ends A and B maintained at 50°C and 100°C respectively until steady state conditions prevail. The temperature of A is suddenly raised to 90°C and at the same time that at B is lowered to 60°C. Find the temperature distribution in the bar at time t.
