Reg No.:				Name:									
SIX	TH S	APJ ABDUL H EMESTER B.TEC	KAI CH D	LAM TECHNO DEGREE COMPRE	LO(EHEN	GICAL UNIV	E RS ATIC	ITY DN, MAY 2019					
		Cours	0 001	Course Code:	EE35 NSIX	52 /F FXAM (FF)							
Max.	Marks	s: 50	e na		11911	E EAAWI (EE)		Duration: 1Hour					
Instructions:		 (1) Each question can (2) Total number of q (3) All questions are a which only ONE is can (4) If more than one (5) Calculators are not 	 (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted 										
1.	The	e infinite series $\sum_{n=1}^{\infty}$	$\frac{1}{n^p}$	-									
	a)	Converges if $p < 1$	b)	Converges if $p > 1$	c)	Converges if $p = 1$	d)	Diverges if $p > 1$					
2.	The	e Wronskian of cos	x an	d sin x is									
	a)	0	b)	$\cos^2 x - \sin^2 x$	c)	$2\cos x\sin x$	d)	1					
3.	The	The equivalent stiffness of two springs of stiffness s1 and s2 joined in series is											
	a)	s1s2/(s1+s2)	b)	(s1/s2)/(s1+s2)	c)	s1+s2	d)	s1s2					
4.	A b wo	A bullet of mass 0.03kg moving with a speed of 400m/s penetrates 12cm into a fixed block of wood. The average force exerted by the wood on the bullet will be											
	a)	10kN	b)	20kN	c)	0kN	d)	15kN					
5.	Wh	ich among the follo	wing	is not a Functional of	constr	aint?							
	a)	Overall Geometry	b)	Forces Involved	c)	Quality control	d)	Materials to be used					
6.	A s des	tructured planning 1 ign:	netho	od used to evaluate v	veakn	ess, strength ,oppo	rtunit	ies and threats of					
	a)	SWOT analysis	b)	Design analysis	c)	WOST analysis	d)	Matrix design					
7.	Eut	rophication of wate	r bod	lies is caused by the	the presence of								
	a)	excessive dissolved oxygen	b)	Excessive dissolved CO ₂	c)	phosphorous and nitrogen nutrients	d)	Algae					
8.	A n	najor advantage of I	Pyrol	ysis in converting bi	s to energy is								
	a)	its heating to 1000 ⁰ F	b)	that Carbon Dioxide is not produced	c)	the Oxygen generated as the by-product	d)	the absorption CO ₂ during the process					

9.	When the projectors are parallel to each other and also perpendicular to the plane, the projection is called											
10	a)	Perspective projection	b)	Oblique projection	c)	Isometric projection	d)	Orthographic projection				
10.	In A	AutoCAD, to obtain	para	llel lines, concentric o	eircle	es and parallel curv	/es;	1s used				
	a)	Array	b)	Fillet	c)	Сору	d)	Offset				
				PART B- COR	E CC	DURSES						
11.	Sel	f-bias provides										
10	a)	Stable Q point	b)	High input impedance	c)	Large voltage gain	d)	High base current				
12.	w n	What is the range of an FET input impedance?										
	a)	10Ω to $1k\Omega$	b)	1k Ω to 50k Ω	c)	50 k Ω to 250 k Ω	d)	$IM\Omega$ to several				
					_		_	hundred M Ω				
13.	The	The feed back signal inoscillator is derived from an inductive divider										
	a)	Hartley	b)	Colpitts	c)	Crystal	d)	Wien bridge				
14.	Open loop gain of an ideal op-amp is											
	a)	high	b)	Infinite	c)	low	d)	zero				
15.	A o con	A certain differential Amplifier using op-amp, has differential voltage gain of 2000 and common mode gain of 0.2. Determine CMRR in dB										
	a)	50dB	b)	60dB	c)	80dB	d)	70dB				
16.												
	a)	Monostable	b)	Astable	c)	Bistable	d)	None of the above				
17.	Zer	Zero crossing detector is basically										
	a)	A Sine wave to square wave converter	b)	A Square wave to sine wave converter	c)	A sine wave to triangle wave converter	d)	A sine wave to ramp voltage converter				
18.	Τw	o's compliment of g	iven	binary number 11010) 15							
	a)	10001	b)	00100	c)	00110	d)	00101				
19.	Which of the following is true?											
	(A+	-B)(A+C) is equal to)									
	a)	AC+BC	b)	AB+C	c)	A+BC	d)	AC+B				
20.	A BCD –to-decimal decoder is											
	a)	A 3-line to 8-line decoder	b)	A 1-line to 10 line decoder	c)	A 4-line to 10- line decoder	d)	Any lines –to 10 line decoder				
21.	The race around condition occurs in a J-K flip flop when											
	a)	Both inputs are 0.	b)	Both inputs are 1	c)	The inputs are complementary	d)	Any one of the input				
				Page 2 of 5		5						

U				V1109				Pages: 5		
								combination is present		
22.	A s	hift register can be u	ised	for						
	a)	Parallel to serial conversion only	b)	Serial to parallel conversion only	c)	Digital time delay only	d)	All of the above		
23.	An	other name for twist	ed ri	ng counter is						
	a)	Decade counter	b)	Synchronous counter	c)	Johnson's counter	d)	Universal shift register		
24.	VH	DL Stands for								
	a)	Verilog hardware description language	b)	Vast hierarchical description language	c)	VHSIC hardware description language	d)	VME bus description language		
25.	Tra	nsfer function is app	olicał	ble to						
	a)	Linear time variant system	b)	Linear time invariant system	c)	Nonlinear system	d)	None of the above		
26.	A l resp	inear time invariant ponse $y(t) = te^{-t}$, $t > 0$.	t sys The	tem initially at rest transfer function of	, whe the sy	n subjected to a u stem is	ınit st	tep input, gives a		
	a)	$1/(s+1)^2$	b)	$1/s(s+1)^2$	c)	s/(s+1) ²	d)	1/s(s+1)		
27.	For	a type 2 system, the	e stea	dy state error for a u	ınit ra	mp input is				
	a)	zero	b)	finite	c)	infinite	d)	depends on the system		
28.	How many asymptotes will the root locus of an open loop transfer function with 3 zeroes and 2 poles have?									
	a)	1	b)	2	c)	3	d)	none of the above		
29.	The maximum possible negative slope and final slope of the bode magnitude plot of a transfer function with 3 poles and 2 zeroes are respectively (all values in dB/decade)									
	a)	-40, -20	b)	-60, -40	c)	-60, -20	d)	-40, -40		
30.	Con cro	nsider a feedback system stress negative real ax	ysten is?	n with gain margin	of ab	out 30. At what p	oint c	does Nyquist plot		
	a)	-3	b)	-0.3	c)	-30	d)	-300		
31.	Th	e frequency at wh	nich	phase of open loo	op tra	insfer function i	s 180) ⁰ is called		
	a)	Corner frequency	b)	Cut off frequency	c)	Phase cross over frequency	d)	Resonant frequency		
32.	An acr	ac source of V=50V oss a load. For maxii	and f mum	f=50 Hz, having an ir power transfer, the	nterna e load	Il impedance of (1- impedance should	+j2) Ω l be	is connected		
	a)	(1+ j2) Ω	1	b) (1- j2) Ω	c)	(2+j4) Ω	d)	j2 Ω		

U				V1109				Pages: 5	
33.	The no. of independent loops for a network with N nodes and B branches is								
	a)	N-1	b)	B-N	c)	B-N+1	d)	Independent of number of nodes	
34.	A p two wou	arallel combination of capacitors of capacita uld be	two : nce (resistors, each of R C each is fed from a	Ω, i a DC	s in series with a pa source. The time c	aralle onsta	el combination of ant of the circuit	
	a)	CR	b)	2CR	c)	CR/4	d)	CR/2	
35.	Wh indu The	en two coupled coils of uctance is 12 mH. Whe maximum value of ne	f equ n the t ind	al self inductances by are connected in uctance when they	are of the are of	connected in series other way, the net i connected in parall	in or induc el in	ne way, the net stance is 4 mH. a suitable way is	
	a)	2mH	b)	3mH	c)	4mH	d)	6mH	
36.	A tv	wo-port network is sym	met	rical if					
	a)	$Z_{12}=Z_{21}$	b)	AD-BC=1	c)	$Z_{11}=Z_{22}$	d)	h ₁₂ = - h ₂₁	
37.	A p	olynomial q(s) is Hurw	itz i	f					
	a)	q(s) is real when s is real	b)	q(s) is real and have real roots which are zero or negative	c)	q(s) has conjugate pair of complex roots	d)	None of these	
38.	Cho	oose a conventional sou	irce o	of energy from the	follo	owing:			
	a)	Nuclear	b)	Wind	c)	Solar	d)	Tidal	
39.	Tra	nsposition of a 3 phase	tran	smission line helps	in _	of the	e 3 pl	hases	
	a)	To find L and C	b)	Increasing L and C	c)	To reduce supply frequency	d)	Equalizing L and C	
40.	Pin	insulators are normally	v use	d up to voltage of a	abou	t			
	a)	100 kV	b)	66kV	c)	33kV	d)	250kV	
41.	ΗV	DC transmission lines	are	more economical fo	or				
42.	a) Dis	Long distance transmission tance Relays are used f	b) or th	Short distance transmission e protection of	c)	Interconnected System	d)	Hybrid System	
	a)	Generator	b)	Transformer	c)	Transmission line	d)	Bus bar	
43.	Buc	chholz relay is used to p	orote	ct against	- /				
	a)	Internal fault	b)	External fault	c)	Rotor fault	d)	All of the above	
44.	Sele	ect a suitable winding f	or D	C generator for gen	nerat	ing large current			
	a)	Progressive wave winding	b)	Lap winding	c)	Retrogressive wave winding	d)	Wave winding	
45.	The	efficiency of a dc machin	ne is	maximum when		0			
46	a) Stat	Copper loss = hysteresis loss	b)	Hysteresis loss = Eddy current loss because	c)	Eddy current loss = Copper Loss	d)	Constant Loss= Variable Loss	

V1109

47	a)	These motors have low starting torque	b)	These motors are not self starting	c)	Back emf of these motors is high initially	d)	To restrict the armature current at starting		
47.	Iden	itify the circuit element	that	stores energy in th	ie ele	ectromagnetic field				
	a)	Inductance	b)	Condenser	c)	Variable resistor	d)	resistance		
48.	Magnetising impedance of a transformer is determined by									
	a)	SC Test	b)	OC Test	c)	Both (a) and (b)	d)	Load Test		
49.	Satisfactory operation of three phase transformers in parallel requires									
	a)	Same voltage rating, polarity, phase sequence, percentage impedance and vector group	b)	Same voltage rating, frequency and vector group	c)	Same voltage rating, polarity, frequency and percentage impedance	d)	Same voltage rating,frequency and percentage impedance		
50.	The	purpose of providing d	lumn	ny coil in dc genera	ator	is				
	a)	For mechanical Balance	b)	To reduce Eddy current loss	c)	To reduce Hysteresis loss	d)	To increase efficiency of generator		
