Reg N	0.:			Name:								
SIX	TH S	APJ ABDUL EMESTER B.TE	KAI CH D	AM TECHNO DEGREE COMPRI	LO(EHEN	GICAL UNIV	ERS ATIO	ITY N, MAY 2019				
		Cour	se nai	Course Code: ne: COMPREHE	EC35	52 VE EXAM (EC)						
Max.	Marks	s: 50	se nu					Duration: 1Hour				
Instructions:		 (1) Each question c (2) Total number of (3) All questions are which only ONE is (4) If more than one (5) Calculators are 	 (1) Each question carries one mark. No negative marks for wrong answers (2) Total number of questions: 50 (3) All questions are to be answered. Each question will be followed by 4 possible answers of which only ONE is correct. (4) If more than one option is chosen, it will not be considered for valuation. (5) Calculators are not permitted PART A- COMMON COURSES 									
1.	The	e infinite series $\sum_{n=1}^{\infty}$	$\frac{1}{1} \frac{1}{n^p}$	-								
	a)	Converges if $p < 1$	b)	Converges if $p > 1$	c)	Converges if $p = 1$	d)	Diverges if $p > 1$				
2.	The	e Wronskian of co	s x an	$d \sin x$ is								
	a)	0	b)	$\cos^2 x - \sin^2 x$	c)	$2\cos x\sin x$	d)	1				
3.	The	he equivalent stiffness of two springs of stiffness s1 and s2 joined in series is										
	a)	s1s2/(s1+s2)	b)	(s1/s2)/(s1+s2)	c)	s1+s2	d)	s1s2				
4.	A bullet of mass 0.03kg moving with a speed of 400m/s penetrates 12cm into a fixed block o wood. The average force exerted by the wood on the bullet will be											
	a)	10kN	b)	20kN	c)	0kN	d)	15kN				
5. Which among the following is not a Functional constraint?												
	a)	Overall Geometry	b)	Forces Involved	c)	Quality control	d)	Materials to be used				
6.	A structured planning method used to evaluate weakness, strength ,opportunities and threats of design:											
	a)	SWOT analysis	b)	Design analysis	c)	WOST analysis	d)	Matrix design				
7.	Eut	Eutrophication of water bodies is caused by the presence of										
	a)	excessive dissolved oxyger	b) 1	Excessive dissolved CO ₂	c)	phosphorous and nitrogen nutrients	d)	Algae				
8.	A major advantage of Pyrolysis in converting biomass to energy is											
	a)	its heating to 1000 ⁰ F	b)	that Carbon Dioxide is not produced	c)	the Oxygen generated as the by-product	d)	the absorptionCO₂ during theprocess				

9.	When the projectors are parallel to each other and also perpendicular to the plane, the projection is called									
10	a) In /	Perspective projection	b)	Oblique projection	c)	Isometric projection	d)	Orthographic projection		
10.	111 F	AutoCAD, to obtain	parai	ier nines, concentric c	licie		es, <u> </u>			
	a)	Array	b)	Fillet	c)	Сору	d)	Offset		
				PART B- CORI	E CC	DURSES				
11.	A source of angular frequency of 1 rad/s has a source impedance consisting of a 1 Ω resistance in series with a 1H inductance. The load that will obtain maximum power is									
	a)	1Ω resistance	b)	1Ω resistance in parallel with 1H inductance	c)	1Ω resistance in parallel with 1F capacitance	d)	1Ω resistance in series with 1F capacitance		
12.	Laplace transform of the delayed unit impulse function $\delta(t-1)$ is:									
	a)	1	b)	0	c)	e ^{-s}	d)	infinity		
13.	An I	RC circuit has capacitan	ce C=	$2\mu F$ in series with a resist	ance	$R = 1M\Omega$. The time co	nstant			
	of the circuit (in seconds) is:									
	a)	3	b)	0.5	c)	1/3	d)	2		
14.	As the poles of a network shift away from the x-axis, the response									
	a)	Remains constant	b)	Becomes less oscillating	c)	Becomes more oscillating	d)	None of these		
15.	If a two port network has transmission parameters A,B,C & D, the impedance measured at input port with output open circuited is									
	a)	A/C	b)	B/D	c)	AD/BC	d)	AB/CD		
16.	A series RLC circuit has a resonance frequency of 1kHz and a quality factor Q of 200. If each of R, L, and C is doubled from its original value , the new Q of the circuit is									
	a)	25	b)	50	c)	100	d)	200		
17.	Find the value of x if the mutual inductance is 20H, the inductance of coil 1 is x H and the inductance of coil 2 is 8H. The coupling coefficient is 5.									
	a)	2Н	b)	4H	c)	6H	d)	8H		
18.	The odd part of $x(t)=1+\sin^2(t)$ is									
	a)	1	b)	Sin ² (t)	c)	$1+\sin^2(t)$	d)	0		
19.	A stable LTI system will have its impulse response,									
	a)	stable	b)	causal	c)	Finite for all times	d)	Absolutely summable		
20.	A continuous time non-periodic signal is characterised with a									
	a)	Fourier series	b)	Fourier transform	c)	Z-transform	d)	Discrete time fourier series		
21.	For	an RC low pass filter th	e freq	uency response, H(s), wh	ere s=	≡jω, is				
	a)	1/(sCR+1)	b)	s/(sCR+1)	c)	R/(sCR+1)	d)	C/(sCR+1)		
22.	If Z-transform of $x(n)$ is $X(z)$, then Z-transform of $a^nx(n)$ is									
	a)	a ^z X(z)	b)	aX(z/a)	c)	X(z/a)	d)	a X(z)		
23.	A stable and causal discrete system will have all its poles of its transfer function									
	a)	On the unit circle	b)	Inside the unit circle	c)	Outside the unit	d)	Location of poles		

U

						circle		does not matter			
24.	The	derivative of $\delta(t)$, $(d\delta(t))$)/ <i>dt</i>) is								
	a)	undefined	b)	0	c)	1	d)	u(t)			
25.	The emitter bypass capacitor (capacitor across R_E) is used in RC coupled amplifier to										
	a)	Increase the O/P impedance of the transistor	b)	Avoid voltage gain drop	c)	Forward bias the transistor	d)	Reduce RC noise in amplifier			
26.	Multi stage amplifiers are also called										
	a)	Cascode amplifiers	b)	Darlington pair	c)	Cascade amplifiers	d)	None of the above			
27.	If the feedback factor of an amplifier is 0.01, the gain with negative feedback is approximately										
	a)	100	(b)	1	c)	1000	(d)	500			
28.	Which of the following improvements is (are) a result of the negative feedback in a circuit?										
20	a)	Lower output impedance	(b)	Reduced noise	c)	More linear operation	(d)	All of the above			
29.	Class D amplifiers differ from an other classes of amplifiers because										
	a)	the output transistors are operated as switches	(b)	of their very low input capacitance	c)	of their high- frequency response capabilities	(d)	they employ dual MOSFETs.			
30.	The output impedance of a voltage regulator is										
	a)	Very high	(b)	Equal to load voltage divided by load current	c)	Very Small	(d)	Equal to input voltage divided by output current			
31.	At channel pinch-off of MOSFET										
	a)	The width of the induced channel become non linear	(b)	The width of the induced channel become very large	c)	Width is 1/e times maximum possible width	(d)	Width of induced channel is zero and current saturates			
32.	A vector can be completely prescribed within a region by its										
	a)	Curl & Gradient	(b)	Divergence& Curl	c)	Gradient,	(d)	Laplacian			
						Divergence &Curl					
33.	In metals which of the following equation will hold good?										
	a)	$\operatorname{Curl}(\mathrm{H}) = \mathrm{J}$	(b)	Curl(J) = dD/dt	c)	Curl(H) = D	(d)	$\operatorname{Curl}(J) = dB/dt$			
34.	The Brewster angle is expressed as										
	a)	$\tan^{-1}(n)$	(b)	$\tan^{-1}(n_1/n_2)$	c)	$\tan^{-1}(n_2/n_1)$	(d)	tan (n)			
35.	Which of the statements are true for Coaxial line										
	a)	It supports TEM	(b)	Also supports other	c)	Power flow is	(d)	All of the above			
		waves		higher modes like		confined in the					
				TE,TM		region between the					
						conductors					
36.	The	characteristic impedance	e of a	line having open and sho	ort imp	bedances of 20 and 5 re	spectiv	vely is			
	a)	100	(b)	10	c)	20	d)	5			
37.	The dominant mode in waveguide is the mode which has										
	a)	Highest frequency	(b)	Highest attenuation	c)	Lowest phase constant	(d)	Highest wavelength			

Pages: 4

V1111

38.	Which is the incorrect expression									
	a)	Grad Div	(b)	Div Curl	c)	Grad Curl	(d)	Curl Grad		
39.	The range of signed decimal numbers that can be represented by 6-bits 1'scomplement number is									
	a)	-31 to +31	(b)	-63 to +63	c)	-64 to +63	(d)	-32 to +32		
40.	A di of th in st	gital system is require e amplifier from mini raight binary, is	d to amj mum to	plify a binary-encoded a a maximum in100 incre	udio sig ment. T	gnal. The user should t The minimum number	be able of bits	to control the gain required to encode,		
	a)	8	(b)	6	c)	5	d)	7		
41.	Choo appr Grou P. SI Q. C R. D a)	ose the correct one fro opriate item in Group up 1: hift register counter becoder P - 3, $Q - 2$, $R - 1$	m amon 2. Group 2 1. Freq 2. Addu 3. Seria (b)	ing the alternatives a, b, c 2: uency division ressing in memory chips al to parallel data conver P-3, $Q-1$, $R-2$	r, d afte	r matching an item fro P −2, Q −1, R −3	m Groo (d)	ıp 1to the most P −1, Q −2, R −2		
42.	A 4 a each a)	bit ripple counter and . If the worst case dela R = 10 ns,	synchro ay in the (b)	nous counter are made us ripple counter and the s R = 40 ns,	using fli synchro c)	ip flops having a propa nous counter be R and $R = 10$ ns	gation S resp (d)	delay of 10 ns ectively, then R = 30 ns,		
		S = 40 ns		S = 10 ns		S = 30 ns		S = 10 ns		
43.	What is the modulus of 3-bit Ring counter?									
	a)	3	b)	8	c)	6	d)	None of the above		
44.	Two states are said to be equal if they have exactly same									
	a)	inputs	(b)	Next state	c)	Output	(d)	Both a and b		
45.	Which of the following is a low frequency noise?									
	a)	Thermal noise	(b)	Flicker noise	c)	Shot noise	(d)	Partition noise		
46.	For AM, with 100% modulation, power in each sideband is of that of carrier?									
	a)	50%	(b)	70%	c)	25%	(d)	60%		
47.	Which of the following analog modulation scheme requires minimum transmitted power and minimum channel bandwidth?									
	a)	DSB-FC	(b)	VSB	c)	DSB-SC	(d)	SSB		
48.	Super heterodyne principle provides selectivity at									
	a)	RF stage	(b)	IF stage	c)	Demodulating stage	(d)	Audio stage		
49.	Armstrong method is used for the generation of									
	a)	Direct FM	(b)	Indirect FM	c)	SSB-SC	(d)	DSB-SC		
50.	PSTN stands for									
	a)	Public Switched Telephone Network	b)	Private Switched Telephone Network	c)	Primary Service Telephone Network	d)	Primary Service Telephone Numbers		
