Reg	No.:			Name:				
SI	XTH S	APJ ABDUL K EMESTER B.TEC	KAL CH D	AM TECHN	OL REH	OGICAL UNIV ENSIVE EXAMIN	/ ER NATI	SITY ON, MAY 2019
		Course	e nar	Course Code ne: COMPREH	e: CS IEN	S352 SIVE EXAM (CS)	
Max	. Marks	s: 50						Duration: 1 Hour
Instr	uctions:	 (1) Each question car (2) Total number of q (3) All questions are t which only ONE is (4) If more than one of (5) Calculators are not 	ries of uestio o be a s corre option ot pern	ne mark. No negative ons: 50 onswered. Each quest ect. is chosen, it will not nitted PART A- CON	e mar tion w be co IMC	ks for wrong answers ill be followed by 4 poss nsidered for valuation. ON COURSES	ible ai	iswers of
1.	The ra	adius of convergence	e of t	he series $\sum_{k=1}^{\infty} \frac{(x-5)^k}{k^2}$	$\frac{5}{k}$ is	S		
	a)	1	b)	2	c)	3	d)	0
2.	Soluti	on of $y^{\prime\prime\prime} - y^{\prime} = 0$	is					
	a)	$c_1 + (c_2 + c_3 x)e^x$	b)	$c_1 e^x + c_2 e^{-x}$	c)	$c_1 + c_2 e^x + c_3 e^{-x}$	d)	$c_1 + (c_2 + c_3 x)e^{-x}$
3.	A mas single	ss m is attached to tw degree of freedom s	vo id syster	entical springs ha m is	ving	spring constant k. N	atural	frequency of the
	a)	$\sqrt{2k/m}$	b)	$\sqrt{3k/m}$	c)	$\sqrt{4 k/m}$	d)	$\sqrt{k/m}$
4.	A ball Tensio	l of weight 100N is t on in the cord is	tied to	o a smooth wall b	y a co	ord making an angle	of 30	degree to the wall.
	a)	86.6	b)	50	c)	75.5	d)	0
5.	The description of the suitable suitable structure of the suitable str	esired features or ch ility for a given task	aract	eristics of the desi	ign tl	nat determine its ulti	mate	effectiveness or
	a)	Design Function	b)	Design	c)	Design analysis	d)	Design Functions
6.	In 'Ho	ouse of Quality' the	roof	constraints represents:				
	a)	Relationship between customer and manufacturer	b)	Inter– relationship between technical requirements	c)	Relation between customer and technical requirements	d)	Customer requirements
7.	Lowe	st atmospheric temp	eratu	re is observed in -				
	a)	Troposphere	b)	Stratosphere	c)	Thermosphere	d)	Mesosphere
8.	Indust	trial Symbiosis aims	at					

Pages: 6

V1108

	a)	zero waste generation	b)	energy efficiency	c)	high gene	employment eration	d)	industrial mechanisation
9.	A 5 cr	n long line is parall	lel to	VP and inclined at	t 30°	to HI	P. What is its ler	ngth i	in the front view?
	a)	4.33 cm	b)	2.5 cm	c)	5 cn	1	d)	2.88 cm
10.	A cyli H.P cu	nder is placed on H atting the solid the	I.P on sectio	its base and section gives	on pl	ane is	inclined to V.P	and	perpendicular to
	a)	parabola	b)	circle	c)	recta	angle	d)	ellipse
				PART B- CO	ORE	COU	RSES		
11.	Wh	ich of the following	g are	tautologies?					
		1. p V ~p	2.]	p ∧ ~p	3. p	v (q	∨ ~q)	2	1. p∨(q∧~q)
	a)	1 and 3	b)	3 and 4		c) 2	and 4	d)	1 and 2
12.	G= here	{0,1,2,3,4,5} is a gr e?	roup ı	under multiplication	on me	odulo	6. Which are th	е сус	elic generators
	a)	1, 3, and 5	b)	1 and 5	(c) 1	, 2, and 3	d)	1, 2, 3, 4. and 5
13.	If A	$X = \{\alpha, \mu\}$ and $B = \{1, 2\}$	2,3},v	what is n(AXB)?					
	a)	4	b)	6		c) 5		d)	3
14.	If e pla	very team has to pl yed?	ay 19	games in a round	robi	n leag	ue, totally how	many	y matches are to be
	a)	250	b)	300		c) 2	.00	d)	190
15.	Fin	d the complement of	of 2 ir	the lattice (S_{60} , D) wh	ere D	is Divisor		
	a)	2	b)	15		c) 6		d)	None of these
16.	Cor	nverse of $P \rightarrow Q$ is							
	a)	$P \rightarrow Q$	b)	$Q \rightarrow P$		c) 1	$Q \rightarrow 1P$	d)	$P \rightarrow Q$
17.	Eve	ery chain is a	la	ttice					
	a)	distributive	b)	complemented		c) c	omplete	d)	bounded
18.	Wh	ich of the following	g is no	ot efficiently suppo	orted	l by a	singly linked lis	st?	
	a)	Accessing an element in the current position	b)	Insertion after current position		c) I c	nsertion before urrent position	d)	Traversing to the position immediately after the current position
19.	The resp	e inorder and preor pectively. What is t	ler tra	versals of a binary rresponding preore	y tree der tr	e are [avers	b e f a c d g] and al?	d [a e	e b f d c g]
	a)	bfecgda	b)	edbgfca		c) e	d b f g c a	d)	d e f g b c a
20.	Cor	nsider the following	g loop						
	for	i = 1 to n							

U

	ſ							
	Î	or $J = 1 + 1$ to n						
	T 1	print "Hi"	1					
	The	e asymptotic time co	omple	exity of above loop is				
	a)	$O(n^3)$	b)	O(n log n)	c)	$O(n^2)$	d)	O(n)
21.	Tin	ne complexity of ins	sertin	g a new node at the r	niddl	e of a single linked	list is	
	a)	O(log n)	b)	O(1)	c)	O(n log n)	d)	O(n)
22.	Wit stac	th only enqueue and ck using queue?	l dequ	eue operations, how	man	y queues will you r	need to	o implement a
	a)	4	(b)	3	c)	2	(d)	1
23.	A h Inse loca	ash function <i>f</i> definer ert the keys 37,38,7 ation of 11?	ned as 2,48,9	f(key)= key mod 7, 98 and 11 into the tab	with l	linear probing used dexed from 0 to 6.	to res What	solve collisions. will be the
	a)	3	(b)	5	c)	4	(d)	6
24.	The	e following sequenc	e of o	operations are perform	ned c	on a stack:		
	PU	SH(10), PUSH(20),	, POP	, PUSH(10), PUSH(2	20), F	POP, POP, POP, PU	JSH(2	20), POP
	The	e sequence of values	s pop	ped out is:				
	a)	20,10,20,10,20	(b)	20,20,10,10,20	c)	10,20,20,10,20	(d)	20,20,10,20,10
25.	Co	nsider the given gra	mma	r				
	S→	AB						
	A	BB/a						
	B→	AB/b						
	Che	pose incorrect state	ment.					
	a)	aaab can be derived from above grammar.	(b)	bbab can be derived from above grammar.	(c)	abba can be derived from above grammar.	(d)	abbab can be derived from above
26.	Let	N be an NFA and v	w be a	a string. We say that	N acc	cepts w. if		grammar.
	a)	All computation paths of N on w reach an accept state.	(b)	Exactly one computation path of N on w reaches an accept state.	c)	No computation paths of N on w reach an accept state.	(d)	At least computation paths of N on w reach an accept state
27.	Cor foll	nsider the following owing grammar gen	g lang nerate	uage, $L = \{w \in \{0, 1\}\}$ es the above language	} w ?	is a palindrome }, `	Which	n of the
	a)	$\begin{array}{l} \mathrm{S} \rightarrow \mathrm{0S0} \mid \mathrm{1S1} \mid \\ \mathrm{\epsilon} \end{array}$	(b)	$S \rightarrow 0S0S \mid 1S1S \mid \epsilon$	c)	$S \rightarrow 0S0 \mid 1S1 \mid \\0 \mid 1$	(d)	$S \rightarrow 0S0 \mid 1S1 \\ \mid 0 \mid 1 \mid \epsilon$

28. A Turing machine that is able to simulate other Turing machines a) Nested Turing (b) Universal Turing c) Counter (d) Multi-tape machine machine machines Turing Machine 29. While applying pumping lemma over a regular language, we consider a string w that belongs to L and fragment it into _____ parts. a) 2 (b) 5 c) 3 (d) 6 30. How many states will be there for the minimum state DFA that accepts strings which ends with 'aa' over the alphabet set{a,b}? (d) 4 1 3 a) (b) 2 c) 31. Which of the following operators is not present in any regular expression? (b) concatenation Kleene closure a) union c) (d) division 32. The page table contains base address of (b) page offset (d) none of the a) c) page size mentioned each page in physical memory 33. Which of the following statements are true? I. Shortest remaining time first scheduling may cause starvation II. Preemptive scheduling may cause starvation III. Round robin is better than FCFS in terms of response time a) I only (b) I and III only II and III only (d) I, II and III c) 34. If the disk head is located initially at 32, find the number of disk moves required with FCFS if the disk queue of I/O blocks requests are 98, 37, 14, 124, 65, 72 a) 319 (b) 326 338 (d) 360 c) 35. A counting semaphore is initialized to 4. Then 8 P(wait) and 3 V (signal) operations are performed on the semaphore. The final value of the semaphore is a) 1 (b) -1 2 (d) -2 c) 36. Simplest way of deadlock recovery is Lock one of the a) Roll back (b) Pre-empt resource c) (d) Kill the one of process the process Suppose that a process is in "Blocked" state waiting for some I/O service. When the service is 37. completed, it goes to the : a) Running state (b) Ready state Suspended state (d) Terminated c) state In fixed size partition, the degree of multiprogramming is bounded by _ 38. the CPU the number of (b) all of the a) c) the memory size (d) partitions utilization mentioned

V1108

Pages: 6

U

39.	Which of the following register automatically increments its contents during the instruction execution?							
	a)	Instruction Register(IR)	(b)	Program Counter(PC)	c)	General Purpose register	(d)	Link Register
40.	What num	at is the range of ac abers?	tual e	exponent in the IEEE	singl	e precision standar	d for	floating point
	a)	-126 to 127	(b)	-127 to 127	c)	-128 to 128	(d)	-126 to 126
41.	The call	method for updatir ed	ng the	e main memory as soc	on as	a word is removed	from	the Cache is
	a)	write-through	(b)	write-back	c)	protected write	(d)	cache-write
42.	Inst	ruction decoder of a	a CPI	J				
	a)	Decodes the instruction and carries out the arithmetic and logical operations	(b)	Decodes the instruction and generates the corresponding control signals.	c)	Decodes and stores the instruction currently being decoded.	(d)	None of the above
43.	The	number -112 can b	e rep	resented in sign and 1	nagn	itude method (8 bit	num	ber) as
	a)	00001111	(b)	11110000	c)	00010000	(d)	01110000
44.	A computer uses 32-bit byte addressing. The computer uses a 2-way associative cache with a capacity of 32KB. Each cache block contains 16 bytes. Calculate the number of bits in the TAG, SET, and OFFSET fields of a main memory address.							
	a)	TAG=18, SET=10, OFFSET=4	(b)	TAG=16, SET=12, OFFSET=4	c)	TAG=20, SET=10, OFFSET=2	(d)	TAG=16, SET=8, OFFSET=8
45.	Con	sider the join of a r	elatio	on R with a relation S	. If R	has m tuples and S	S has:	n tuples then the
	a)	m + n and 0	b)	mn and 0	c)	m + n and m – n	d)	mn and m + n
46.	Consider the relation scheme R = (E, F, G, H, I, J, K, L, M, N) and the set of functional dependencies $\{\{E,F\} \rightarrow \{G\}, \{F\} \rightarrow \{I,J\}, \{E,H\} \rightarrow \{K,L\}, \{K\} \rightarrow \{M\}, \{L\} \rightarrow \{N\}\}$ on R. What is the key for R?							
	a)	{E,F}	b)	{E,F,H}	c)	$\{E,F,H,K,L\}$	d)	{E}
47.	If ev rela	very non-prime attri tion will be in	ibute	is fully functionally o	lepen	ident on the primar	y key	, then the
	a)	BCNF	(b)	2NF	c)	1NF	(d)	3NF
48.	Sup = 10 byte	pose that we have a 024 bytes. File reco es. The blocking fac	n ord rds an tor a	lered file with $r = 30$, re of fixed size and ar nd the number of bloc	000 r e uns cks ne	ecords stored on a spanned, with records eeded for the file and	disk v d leng re	with block size B gth R = 100

|--|

	a)	10 and 3000	(b)	3000 and 10	c)	10 and 300	(d)	8 and 3000
49.	Wh	at does the followir	ng qu	ery do?				
	UP	DATE student						
	SE	Γ marks = marks*1.	10;					
	a)	It increases the	(b)	It decreases the	c)	It increases the	(d)	It is
		marks of all the		marks of all the students by 90%		marks of all the students by 110%		syntactically wrong
		students by 10%						
50.	Am	ongst the ACID p	ropei	ties of a transaction	ı, the	'Durability' prop	erty r	equires. that the

changes made to the database by a successful transaction persist

a)	Except in case of an operating system crash	(b)	Except in case of a disk crash	c)	Except in case of a power failure	(d)	Always, even if there is a failure of any kind	
							KIIIQ	
